

A Review: Hepatitis C and its overview of analytical methods

¹Sonawane K.B,²Waghmare S.U, ³Dhone J.E, ⁴Kudhekar A.R,⁵Darwade A.P,

^{1,4}Assistant Professor, ^{2,3,5}associate professor ^{1,2,3,4,5}Rashtriya College of Pharmacy, Hatnoor, Maharashtra, India Corresponding Author:-Sonawane K.B

Submitted: 09-03-2023	Accepted: 18-03-2023

ABSTRACT:

Chronic hepatitis C infection affects millions of people worldwide and confers significant morbidity and mortality. Effective treatment is needed to prevent disease progression and associated complications. The era of direct acting antiviral (DAA) therapies began with the development of first-generation NS3/4A protease inhibitor in 2011. They vastly improved outcomes for patients. Daclatasvir is an inhibitor of hepatitis C virus NSSA protein that is used for the therapy of chronic hepatitis. Daclatasvir used with combination of other drug

like sofosbuvir, ledipasvir for the treatment of chronic hepatitis C infection. There is need to developed and validate a simple, but still reliable and sensitive different analytical methods for the quantification of Daclatasvir and its combination. This review presents the effect off Daclatasvir, sofosbuvir and ledipasvir on the treatment of HCV with the help of spectrophotometric method, analytical techniques and separation method.

KEYWORDS: Hepatitis c, Daclatasvir, Analytical methods, HCV

I. INTRODUCTION

Hepatitis C is an infection to the liver which is caused by the hepatitis c virus (HCV). Now a days; many people's get infected by this hepatitis c virus by sharing the needles or other equipment's to inject the drugs. To some of the peoples, hepatitis c is a short-term illness but for 80-85% of peoples who get infected with this virus hepatitis c it becomes long term chronic infection WHO's updated around 2018 guidelines which recommend the therapy with the panic-genotypic direct acting antiviral (DAAs)^[1]

Chronic hepatitis c is a danger disease which can produce long term problems related to health, even death too. There is unavailability's of the vaccines for hepatitis c. Hepatitis c is an infection to the liver which can ultimately lead to damage to the liver. Around 4 millions peoples in the US have this disease. This virus is spread through the infected persons blood or fluids of body. Hepatitis c virus is the blood borne virus. In the world, 71 million peoples have this chronic hepatitis c virus infection. From these peoples significantly number of these has developed cirrhosis or liver disease.[2]

DAAs can cure the many people with the infection of HIV and duration of treatment is mostly short that is (usually 12 to 24 months), which depends upon absence or presence of the cirrhosis. Interferon, ribavarin and peg interferon is the main which is mainly used in the treatment for hepatitis c. This can also have some side effects such as fatigue, anemia, skin rash, depression and diarrhea. But in recent years the treatment for the hepatitis c is changed rapidly. [3]

Now you are most likely seen availabilities of this kind of medication: DACLASTASVIR (Daklinza) this pills once in a day with the sofosbuvir for the 12 weeks. SOFOSBUVIR-VELPATASVIR this pills which have to take for the 12 weeks. [3] LEDIPASVIR- SOFOSBUVIR (Harvoni) this pills cures the disease in many peoples in 8-12 weeks in genotype 1,4,5,6. DAAs which mainly target HCV proteins in such a way as the nonstructural (NS) 3 protease, NS5B polymerase and NS5A proteins and those other factors which are requires for replication of the HIV. DAAs have the characteristics which are increased the potency, the higher barriers to the resistance, more favorable profile.

II. ANALYTICAL METHOD

The worldwide use of these HCV antiviral agents in single or in the combined dosage form and there clinical or pharmacological studies which make enhance for the need of development of the fast and sensitive analytical techniques or method to assay this kind of the drugs. There are several

chromatographic or spectroscopic method has been used to resolve the mixture of these compounds with the most of overlapping spectra without the separation of such spectrophotometry derivatives.[4] In the current situation, the development of effortless and the rapid spectrophotometric method to estimate the single or combined pharmaceuticals formulation or achieving the high accuracy and that too without the prior separation.Analytical techniques which are defined as the set of techniques or set of methods which allow us to

know qualitatively or/and quantitatively the composition of any of the material and the chemical state in which it is located. Now a days, the method of assay in the monographs which includes spectrometry, chromatography, titrimetric and capillary electrophoresis and one of the electro analytical method also can been seen. From the starting of the drug development stage to the marketing and the post marketing, analytical techniques play a key role, it mainly use for understanding the chemical stability and physical stability of the drug, for the stability of any drug molecules identifying the impurities.

Various analytical methods are available that are as follows-

- A. Spectroscopic method-
- 1. ŪV
- 2. IR
- 3. NMR
- 4. Massspectrometry
- B. Separation methods
- 1. TLC
- 2. GC
- 3. HPLC
- C. Hyphenated methods-
- 1. GC–MS
- 2. LC-MS
- 3. LC–DAD–MS
- 4. LC–NMR
- 5. LC–MS–MS
- 6. HPLC–DAD–MS
- 7. HPLC–DAD–NMR–MS

Analytical method for hepatitisc drugs A. Daclatasvir(single drug):

Daclatasvir is sold under the trade name of Daklinza, a medication used single or in combination with other medication to treat hepatitis c. [7] The other medication used with the daclatasvir are sofosbuvir, ribavirin and interferon, they are vary depending on the virus type. It is taken orally once a day. Molar mass of daclatasvir is 738.89 g/mol. Bioavailability of daclatasvir is 67%. Protein binding is 99%. Elimination half-life is 12-15 hours.

Mechanism of action:

Daclatasvir is used to stop HCV viral RNA replication and protein translation by directly inhibiting HCV protein NS5A. [18]

B. Sofosbuvir and Ledipasvir (combination drug)

The fixed dose of combination of ledipasvirsofosbuvir which is provide an effective and well tolerance one pill in a day for the treating of genotypes 1,4,5,6, chronic hepatitis (HCV) infection. The combination of sofosbuvir and ledipasvir are used in alone or in combination with ribavirin (copegus, Ribasphere, Rebetol) to treat the certain types of combination of the chronic hepatitis C in the adults and in the children of 3 years of age and the older.[6]

HARVONI is a fixed dose combination of tablets containing sofosbuvir and ledipasvir for oral administration. Ledipasvir is an HCV NS5A inhibitor and that of sofosbuvir is the nucleotide analog inhibitor of HCV NS5B polymerase.[7]

Mechanism of action:

Ledipasvir inhibit a important viral phosphoprotein NS5A, which is an involved in the viral replication, and the secretion

Sofosbuvir on the other hand it is metabolized to an uridine triphosphate mimic, which ultimately act as an a RNA chain terminator when it is incorporated with RNA by NS5B polymerase.

C. Sofosbuvir-

Sofosbuvir, It is mainly sold under the brand name of 'Sovaldi' like others it is a medication used for the treating Hepatitis C . It can recommend with another combination with ribavarin, ledipasvir, daclatasvir, etc. The cure rate is 30 to 97% which is depend on the type of hepatitis c virus involved. The bioavailability of the drug is 92%. The metabolism of it mainly activate to triphosphate (cat A) CES1 which is mainly help your liver recovery. It is mainly discovered in 2007, administeredorally. The peak concentration after the administered orally of sofosbuvir is 0.5-2hrs. post dose.[9] Plasma protein binding of sofosbuvir is 61-67%.

It is discovered by Michael Sofia

2) Daclatasvirand Sofosbuvir(combination)

Daclatasvir and Sofosbuvir combine therapy (SOF/DCV) is an effective and safe for the real world treatment of liver patients associated with liver cirrhosis with hepatitis c virus (HCV) genotype 4. A study took place in 2016 at 4 different clinical setting in Egypt. A total of 551 patients with liver cirrhosis having hepatitis c genotype 4. [15] They get treated by giving sofosbuvir 400mg and daclatasvir 60mg once daily for the 12 week treatment. [19] Sofosbuvir and daclatasvirrepresent the antiviral pan genotypic regimen with pharmacokinetics in hemodialyzed patients. In the treatment of genotype 3a chronic Hcv in that the safety and the efficacy of combination of sof and dcv in 6 male patients.[20]These patients were treated with a reduced dose of SOF 400mg and 60mg of DCV once daily for 12 weeks Sofosbuvir 400mg + daclatasvir 60mg Both are water soluble and they can be absorbed into the bloodstream through stomach. Sofosbuvir and daclatasvir in range of 93% for genotype 3. For genotype 2, 5 and genotype 6 they cure rates are 100% and hepatitis c genotype of cure rate is 97% came from 12-week treatment.

	1		a by different authors in		1443 11.
SR.NO.			MATERIALUSEDIN		YEAR(REFERE
	HOR(FIRSTA		THEIRSTUDY.		NCE)
	UTHOR)				
1.	M.M.BAKER,	StabilityindicatingH	Waters C8 column (4.6	Retentiontimeis5.4	2017(21)
	D.S.ELKAFRA	PLC-DAD	x250mm,5µmparticlesi	min.Linearity	
	WY	method.	ze)DAD Detector	range was 0.6-	
				60µg/mL.	
			0	Correlation	
				coefficient>0.999.	
			5	Daclatasvir	
			model SM7 withloop		
			capacity 100µL.Flow	-	
				over the range	
			mL/minMobile phase:		
			Phosphatebuffer(PH2.		
			/	umat306nm.	
			andacetonitrileratioof7		
				4.42Tailingfactori	
				s1.15andN is6957.	
2.		Threeorganicimpuriti		U	2019(22)
		esandstabilitystudies	columnHyper		
	NAWABSHER		silC18(4.6×100mm×5		
				9.35SD:1.6	
				RSD%:1.3	
				Tailingfactor:1.00	
			samplevolum		
				Theoreticalplates2	
			Mobilephase(A):aceto		
			· · · · · · · · · · · · · · · · · · ·	60000	
			,	Correlation:0.9996	
			Mobilephase(B):100%		
			acetonirile.		
			PH5		

SR.NO.		TYPEOFSTUDY	MATERIALUSEDIN	RESULT.	YEAR(REFERE
	HOR(FIRSTA		THEIRSTUDY.		NCE)
	UTHOR)				
3.	YANDEHUAN	Forcedoxidativedegr	A sunfire	Threesample	2019(23)
	G	adationpathwayofimi	C18Columnw	carried	
		dazolemoiety	atersFlowrate:1ml/min	outandthereretenti	
		usingHPLC	Mobile phase:	ontimearecarried	
			water/ACN/TFA(1900:		
				1 st sample : RT -	
			Wavelenth306	7.22min2 nd	
				sample: RT -9.62	
				min3 rd sample:RT-	
				11.63min	

Table2:Different types of method used by different authors in their study of Sofosbuvir and Ledipasvir

SR NO.	NAME OFAUTHOR (FIRST)		MATERIALUSEDI NTHERESTUDY	RENULT	YEAR(REFER ENCE)
1.	S.K.MASTAN AMMA	indicatingRP- HPLCmethodfor the simultaneousesti mation indosag eform	columnWaters2996 Photodiodearraydete ctor EMPOWERPDA2 software	2.75(LED)4.905(SOF) Sofosbuvirmeanamou ntestimated5.53 Ledipasvirmeanamou ntestimated1.26 %assay:100.8	2017(24)
2.	SAMIA M.EL- GIZAWY	for simultaneous determination of anti hepatitis in rabbit plasma.	WinCATSversion 1.4.10.software silica gel 60 F254 aluminium sheet 100µL syringe Scanningspeed20 mm/s	sofosbuvir- 100.91 SD: 1.64 Recovery of LDS-	

SR NO.	NAME OFAUTHOR (FIRST)	TYPEOFSTUD Y	MATERIALUSEDI NTHERESTUDY	RESULT	YEAR(REFER ENCE)
3.	OLA M.ABDALLA H		Hotfixes.Waters Xterra MS C8 columnInjection volume- 5 µL	Ml/min Intraday-Ledipasvir %recovery- 107.6 RSD%- 7.01 Sofosbuvir Recovery%-101.33 RSD%- 9.70	2017(26)
4.	M.M.BAKER	Validatedspectro photometricandc hromatographic method for analysis of hepatitis c antiviral.	V-VIS spectrophotometryW ithUV1601PC software HPTLC includeCA MAGmicrolitersyrin ge(100µL) TLCsilicagel aluminiumplates60F 254 HPLC system withDAD consist ofwaters 2695 allianceThermohype	HPTLC- Rf value-sofosbuvir- 0.19±0.03 and ledipasvir-0.44±0.03 HPLC-DAD: Sofosbuvir-RT- 2.78±0.02 Tailing factor- 1.16Theoretical plates-4812 Ledipasvir- RT-3.87±0.003 Tailing factor- 1.09Theoretical plates-4860	

Table3:Different types	of method used by	different authors in	their study of Sofosbuvir.

SR. NO.	NAMEOFTHE AUTHOR		MATERIALUSEDINTH EIRSTUDY	RESULT	YEAR(REFERE NCE)
1	SHAHRAMMI RAGHAEI	methodinhuman serum & itscomparison	LCsystem -Manualinjectorvalve20µl -261nmwavelength -Merck Microspore RP 18Column(250×4mmID,5 µm) -c18guardcolumn -Mobile phase- water:Acetonitrile(57:43	-UV-LOD &LOQ-10 &25ng/mlmass detection -Linear regressionColu mnY=0.224x+	2017(28)
2	B.M.GHANDH I	Method fordetermination ofhumanplasma	XevoTQD system -Electronsprayionization -GeminiC-18column - Mobilephase0.5% Formic acid:methanol(30:70) - FlowRate- 0.5ml/min3.0kv capillaryvoltageDesolvati onTemp450°c	SOF is(M+H)+ Ion is m/z - 425.85tom/z–	
3	MARIADELM AZ.CONTRER AS	DAD - MSforqualitativ eand	Agilent1200series -6540AgilentUHD -QToF -Mobilephase- 0.2% formicacid: Acetonitr ile(Gradientsystem) -ZORBAXECLIPSE -XDB-C18column -Columntemp -24°C -Injectionvolume-2μl - Absorbanceat190to600nm Wavelength-260±4nm	Tailingfactorisl owerthan2 R^2 -0.998 CV-1.8% LOD- $0.07\mu g/mlLOQ$ -0.36 $\mu g/mlRSD$ - 1.5% m/zatblankwas 205.068	

			interent autions in their ste	, , , , , , , , , , , , , , , , , , ,	
SR. NO.	NAMEOFAUTHOR(FIRSTAUTHOR)		MATERIALUSEDINTHE IRSTUDY	RESULT	YEAR(REFER ENCE)
Ι.	Mohamed AAbdel- lateef	infraredspectrosc opyfor Determinationant i-HCV	FTIRspectrometerPotassiu m bromidedisc of sof and DACwereprepared. vm-300supermixedvortex electronicsinglepan balance -falcon-50ml conicaltubes -midIR-region(4000- 400cm)	correlationcoeff .0.9995,0.9993f or both	2019(8)
2.	Stefanianotari	ntification in plasmaofHIC/HC V Co- infectedpatients	-UPLCfromwaters\ - c18Luneomegacolumn(50 mm*2.1mmI.D.) - particlesizeof1.6um50ccol umn oven -Mobile phase A.0.1% formicacidandphas eBacetonitrile -flowrate0.4ml/min -Runtime0.4ml/min -Runtime3.5min -UPLCcoupledwith*EVD TQD	Retentiontime -Sof- 1.27minDIC- 1.42min M/Z— 530.098forSOF & 313.03DAC -LOQ—	2018(10)
3.	Mohammadnabil abo-zeid	Dualwavelengths pectrodensito- metricmethod	CAMAG- HPTLC systemconsistoflinomat- 5automaticsampleinjector. HPTLCsilicagel60F254alu miniumsheets. -particlesize-150-200um -bandsize-6mm -100ulsamplesyringe - slitdimension5*0.45mmUl trasonic cleaner centrifugemegafuge	-absorption spectraof sof and DCS inrange200to40 0cm - maxforSOF&D AC-265&DAC- 265&311nm	

Table 4: Different types of method used by different authors in their study of Sofosbuvir and Daclatasvi

				ng -Recovery– 96.6–100.2% RSD– 2.39 &1.29	
4.	NOHA N Atia	methodforpharm acokineticstudyin rabbits	with uv- detectorandrheodyneinject orYounglinAutochro3000s oftware. C18columnMobilephasace tonitrileand10mm sodium acetatebuffer PHS (50:50v/v)Flow rate 1.0ml/minWavelength 260nm &313nm Ultrasonic cleanerCentrifugemegafus ellPH meter model HI 4222	DAC-313 RT(4.25&5.07) Retention factor- 1.13 &1.54 -No 4447&3010 oftheoreticalplat e -Resolution- 2.40	
5.	Dalia W.zidan	&human wineusingmicella rmonolithicHPL C-UV	PerkinElmerseries 200 uv/visdetector C8monolithiccolumn0.45u m membranefiller Degasser DGU –20A5 Flowrate–0.5ml/minat25c Mobilephase0.1msodium dodecylsulfate and 0.3% triethylamine pH– 6.5 > =226nm Injectionvolume–20ul	Linearity– sofandDAC Plasma–(60-	2018(14)

| Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 287

		recovery	

III. CONCLUSION:

The method was applied to therapeutic monitoring of patients for hepatitis C. Thus, this method provides a simple, sensitive, precise and reproductive assay for dosing of their drug that can be readily adoptable to routine use.

REFERENCE:

- [1]. W.H.O.organization,globalhepatitis report2017;worldhealthorganization,2017
- [2]. Mayberry j. etal, there evolution in treatment of hepatitis c, medical clivics of northAmerica2019;103:43
- [3]. Divisionofviralhepatitis national centerforHIV/AIDS,cds.gov.
- [4]. MasoomragaSiddiquizeidAalothman,nafisu rRahman,Analyticaltechniquesinpharmaceu ticalanalysis:AReview, 2013
- [5]. El- khayat H found y Mohamed HI et sofosbuvir plus daclatasvir in 551 patients withhepatitis crelated cirrhosis,genotype4(Feb 7 2018)
- [6]. Sperl j, frankova s, kreidlova m, merta d, etal. Combination of sov/ dac in treatment of genotype 3 chronic hepatitis c virus infection in patient on maintenance hemodialysisvo/m 2017:13
- [7]. Gresjefferys hepatitis c blog deals with the hepatitis c . 2014-2017.
- [8]. Mohamed A. abdel-lateef, Mahmoud A. omar et al, employ Fourier transform infrared spectroscopy for determination of 2nd generation anti-HCV (sofosbuvir and daclatasvir) drug; application to uniformity of dosage units.Page no- 47-51. 2019
- [9]. M.A. Derayea of HCV antiviral and its determination in presence of sofosbuvir. Application to stability study and human plasma, luminescence 33 (7), 2018, 1249-1256.
- [10]. Stefanianotari, Massimo tempestilli, Gabriele fabbri, Raffaella libertine, UPLC-MS/MS method for simultaneous quantification of sofosbuvir & daclatasvir in plasma of HIV/HCV co-infected patients (2018)
- [11]. G. nannetti, L messa, m. celegato Development and validation of a simple

and robust HPLC method with uv detection for quantification of hepatitis c virus inhibitor daclatasvir in human plasma. 134 (2017) 275-281

- [12]. Mohammad nabilabo-zeid, samia. M. Elairawy, noha h. Atia, efficient HPTLC dual wavelength Spectro densitometric method for simultaneous determination of sofosbuvir and daclatasvir: biological and pharmaceutical analysis, 18 (2018)
- [13]. Noha n. atria salwar.el- shaboury, samia m el- gizawy. Mohammad nabilabo-zeid, simultaneous quantitation of two direct acting hepatitis c antivirals (sofosbuvir and daclatasvir) by an HPLC – UV method designated for their pharmacokinetic study in rabbits. 7085 (18), 2018.
- [14]. Dalia w. zidan, wafaa s. hassan, mandal S. Elmasry. Abdalla A. SHALABY, Investigation OF anti – hepatitis c virus, sofosbuvir and daclatasvir in pure form, human monolithic HPLC-UV method, (18), 2018
- [15]. Ryan KJ Ray CG, eds. (2004). Sherri's Medical Microbiology (4th ed.). McGraw Hill. pp. 551–2
- [16]. International conference on Harmonization. Q1A(R2) Stability Testing of new drug substances and products, Geneva, Switzerland: ICH: 2003
- [17]. McConachie SM, Wilhelm SM, Kale-Pradhan PB. New direct-acting antivirals in hepatitis C therapy: a review of sofosbuvir, ledipasvir, daclatasvir, simeprevir, paritaprevir. Expert Rev Clin pharmocol 2016: 287-302
- [18]. Keating GM, Daclatasvir: A review in chronic hepatitis C drugs. 2016:74(14): 1381-91
- [19]. J.H.Chow, C. Chow, The Encyclopedia of hepatitis and liver diseases, Facts on file, New York NY 10001, (2006)
- [20]. A.Kohli, A. Shaffer, A. Sherman, S.Kottilil, Treatment of hepatitis C: A systematic review, JAMA 312 (2014) 631-640
- [21]. M.M. Baker, D.S. El-Kafrawy, M.S. Mahrous, T.S. Belal, Validation stability-

indicating HPLC-DAD method for determination of the recently approved hepatitis C antiviral agents daclatasvir,Annales pharmaceuticsfranchises1092 (2018) 432-439

- [22]. Asia Naz, Nawab Sher, Farhan Ahmed Siddiqui, Muhammad Kashif, Aurangzeb Ansari, Simultaneous analysis of daclatasvir with its three organic impurities : Application in stability studies, Pharmaceuticals and Serum sample, 1471 (2019) 797-805
- [23]. Yande Huang, Bao- Ning Su, Jonathan Marshall, Scott A.Miller, Forced oxidative Degradation pathways of the Imidazole moiety of Daclatasvir, journal of pharmaceutical science (2019) 3312-3318
- [24]. S.K. Mastanamma, S.K.Chandini, S.K. Reehana, P. Saidulu, Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of Sofosbuvir and Ledipasvir in bulk and their combined dosage form, Future journal of pharmaceutical sciences (2017) 1-8
- [25]. Samia M. El Gizawy, Salwa R. Shaboury, Noha N. Atia, Mohammad Nabil Abo-Zeid, New, simple and sensitive HPTLC method for simultaneous determination of anti-hepatitis C Sofosbuvir and ledipasvir in rabbit plasma, Journal of chromatography B 1092 (2018) 432-439
- [26]. A.Ola M. Abdallah, Ahmed M. Abdel-Megied, Amira S.Gouda, Development a

validated highly sensitive LC-MS/MS method for simultaneous quantification of Ledipasvir, Sofosbuvir and its major metabolites GS-331007 in human plasma: Application toa human pharmacokinetics study, journal of pharmaceutical and biomedical analysis 143 (2017) 305-310

- [27]. M.M. Baker, D.S. El-Kafrawy, M.S. Mahrous, T.S. Belal, Validated spectrophotometric and chromatographic methods for analysis of the recently approved hepatitis C antiviral combination ledipasvir and sofosbuvir, Annalespharmaceuticsfranchises (2017)
- [28]. ShahramMiraghaei, BaharehMohammadi, AtefehBabaei, Development and validation of a new HPLC-DAD method for quantification of Sofosbuvir in human serum and its comparison with LC-MS/MS technique: application to a bioequivalence study, Journal of Chromatography B, Volume 1063,(2017) 118-122
- [29]. B.M.Gandhi, A.L.Rao, J.V.Rao, UPLC-MS/MS method for determination of sofosbuvir in human plasma, AnnalesPharmaceutiquesFrancaises, volume 75, (2017) 257-266
- [30]. A.Maria Del Mar Contreras, Aranzazu Morales-Soto, Potential of RP-UHPLC-DAD-MS for the qualitative and quantitative analysis of sofosbuvir in film coated tablets and profiling degradants, Journal of pharmaceutical analysis, volume 7, (2017) 208-213.